Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Combustion and Emission Characteristics of a HCCI Engine Fuelled with Different n-Butanol-Gasoline Blends

2014-10-13
2014-01-2668
Biobutanol, i.e. n-butanol, as a second generation bio-derived alternative fuel of internal combustion engines, can facilitate the energy diversification in transportation and reduce carbon dioxide (CO2) emissions from engines and vehicles. However, the majority of research was conducted on spark-ignition engines fuelled with n-butanol and its blend with gasoline. A few investigations were focused on the combustion and exhaust emission characteristics of homogeneous charge compression ignition (HCCI) engines fuelled with n-butanol-gasoline blends. In this study, experiments were conducted in a single cylinder four stroke port fuel injection HCCI engine with fully variable valve lift and timing mechanisms on both the intake and exhaust valves. HCCI combustion was achieved by employing the negative valve overlap (NVO) strategy while being fueled with gasoline (Bu0), n-butanol (Bu100) and their blends containing 30% n-butanol by volume (Bu30).
Technical Paper

Comparison of Conventional vs Reactivity-Controlled Compression Ignition Diesel-Hythane Dual-Fuel Combustion: An Investigation on Engine Performance and Emissions at Low-Load

2023-06-26
2023-01-1203
The exponential rise in greenhouse gas (GHG) emissions into the environment is one of the major concerns of international organisations and governments. As a result, lowering carbon dioxide (CO2) and methane (CH4) emissions has become a priority across a wide range of industries, including transportation sector, which is recognised as one of the major sources of these emissions. Therefore, renewable energy carriers and powertrain technologies, such as the use of alternative fuels and combustion modes in internal combustion engines, are required. Dual-fuel operation with high substitution ratios using low carbon and more sustainable fuels can be an effective short-term solution. Hythane, a blend of 20% hydrogen and 80% methane, could be a potential solution to this problem.
Technical Paper

Comparison of HCCI Combustion Respectively Fueled with Gasoline, Ethanol and Methanol through the Trapped Residual Gas Strategy

2006-04-03
2006-01-0635
In this paper, HCCI combustion characteristics of three typical high octane number fuels, gasoline, ethanol and methanol, are compared in a Ricardo single cylinder port injection engine with compression ratio of 10.5. In order to trap enough high temperature residual gas to heat intake mixture charge for stable HCCI combustion, camshafts of the experimental engine are replaced by a set of special camshafts with low valve lift and short cam duration. The three fuels are injected into the intake port respectively in different mixture volume percentages, which are E0 (100% gasoline), E50 (50% gasoline, 50% ethanol), E100 (100% ethanol), M50 (50% gasoline, 50% methanol) and M100 (100% methanol). This work concentrates on the combustion and emission characteristics and the available HCCI operation range of these fuels. What's more, the detailed comparison of in-cylinder temperature, ignition timing and other parameters has been carried out.
Technical Paper

Comparison of Performance, Efficiency and Emissions between Gasoline and E85 in a Two-Stroke Poppet Valve Engine with Lean Boost CAI Operation

2015-04-14
2015-01-0827
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Most research on CAI/HCCI combustion operations have been carried out in 4-stroke gasoline engines, despite it was originally employed to improve the part-load combustion and emission in the two-stroke gasoline engine. However, conventional ported two-stroke engines suffer from durability and high emissions. In order to take advantage of the high power density of the two-stroke cycle operation and avoid the difficulties of the ported engine, systematic research and development works have been carried out on the two-stroke cycle operation in a 4-valves gasoline engine. CAI combustion was achieved over a large range of operating conditions when the relative air/fuel ratio (lambda) was kept at one as measured by an exhaust lambda sensor.
Technical Paper

Computational Study of the Effects of Injection Timing, EGR and Swirl Ratio on a HSDI Multi-Injection Diesel Engine Emission and Performance

2003-03-03
2003-01-0346
Reductions in fuel consumption, noise level, and pollutant emissions such as, Nitrogen Oxide (NOX) and Particulate Matter (PM), from direct-injection (DI) diesel engines are important issues in engine research. To achieve these reductions, many technologies such as high injection pressure, multiple injection, retarded injection timing, EGR, and high swirl ratio have been used in high-efficiency DI diesel engines in order to achieve combustion and emission control. However, each technology has its own advantages and disadvantages, and there is a very strong interaction between these methods when they are simultaneously used in the engine. This study presents a computational study of both the individual effect and their interactions of injection timing, EGR and swirl ratio separately and their interaction in a HSDI common rail diesel engine using the KIVA-3V code.
Technical Paper

Computational Study of the Effects of the Re-entrant Lip Shape and Toroidal Radii of Piston Bowl on a HSDI Diesel Engine's Performance and Emissions

2004-03-08
2004-01-0118
The piston bowl design is one of the most important factors that affect the air/fuel mixing and the subsequent combustion and pollutant formation processes in a direct injection diesel engine. The bowl geometry and dimensions, such as pip region, bowl lip area, and torus radius are all known to have an effect on the in-cylinder mixing and combustion process. In order to understand better the effect of torus radius, three piston bowls with different torus radius and lip shapes designs but with the same lip area and pip inclination were investigated using Computational Fluid Dynamics (CFD) engine modelling. KIVA3V with improved sub-models was used to model the in-cylinder flows and combustion process, and it was validated on a High-Speed Direct Injection (HSDI) engine with a 2nd generation common rail fuel injection system.
Technical Paper

Continuous Load Adjustment Strategy of a Gasoline HCCI-SI Engine Fully Controlled by Exhaust Gas

2011-04-12
2011-01-1408
Homogeneous charge compression ignition (HCCI) technology is promising to reduce engine exhaust emissions and fuel consumption. However, it is still confronted with the problem of its narrow operation range that covers only the light and medium loads. Therefore, to expand the operation range of HCCI, mode switching between HCCI combustion and transition SI combustion is necessary, which may bring additional problems to be resolved, including load fluctuation and increasing the complexity of control strategy, etc. In this paper, a continuously adjustable load strategy is proposed for gasoline engines. With the application of the strategy, engine load can be adjusted continuously by the in-cylinder residual gas fraction in the whole operation range. In this research, hybrid combustion is employed to bridge the gaps between HCCI and traditional SI and thus realize smooth transition between different load points.
Technical Paper

Control Strategies for Steady and Transient Operation of a 4-Stroke Gasoline Engine with CAI Combustion Using a 4-Variable Valve Actuating System (4VVAS)

2006-04-03
2006-01-1083
In the last few years, residual gas trapping has been widely used to achieve CAI combustion operation in the four-stroke gasoline engine by means of the negative valve overlap period. In this paper, a flexible mechanical variable valve actuation system based on the production technologies is described. The 4VVAS system is capable of independent control of intake valve lift and its timing, exhaust valve lift and its timing and it has been incorporated in a specially designed cylinder head for a single cylinder research engine. In addition, an engine simulation program has been developed to investigate the potential of the 4VVAS system for CAI engine operation and the switch between CAI and SI operations on the same engine. The engine simulation program is written with Matlab Simulink and incorporates an engine block, a newly developed CAI ignition and heat release model, a valve profile generator, and an engine control module for spark ignition and fuelling control.
Technical Paper

Control of CAI Combustion Through Injection Timing in a GDI Engine With an Air- Assisted Injector

2005-04-11
2005-01-0134
Controlled auto Ignition (CAI) combustion has great potential for reducing both NOx emissions and fuel consumption in IC engines and the application of direct injection technology to the CAI engine adds another dimension of control to the combustion process. In this work an air-assisted injection system was applied to an engine that used residual gas to initiate and control CAI combustion. Injections were performed at Exhaust valve closure (EVC), intake valve opening (IVO) and BDC of the intake/compression stroke and the effects on combustion phasing (i.e. ignition timing and burn duration), engine output, fuel consumption and exhaust emissions analyzed. Injection at EVC gave the best results in terms of engine output, operating range and combustion stability. Injection at IVO generally resulted in the lowest fuel consumption. It was found that injection timing is an effective means of controlling combustion phasing.
Technical Paper

Development of a Two-Stroke/Four-Stroke Switching Gasoline Engine - The 2/4SIGHT Concept

2005-04-11
2005-01-1137
The pursuit of flexibility is a recurring theme in engine design and development. Engines that are able to switch between the two-stroke operating cycle and four-stroke operation promise a great leap in flexibility. Such 2S-4S engines could then continuously select the optimum operating mode - including HCCI/CAI combustion - for fuel efficiency, emissions or specific output. With recent developments in valvetrain technology, advanced boosting devices, direct fuel injection and engine control, the 2S-4S engine is an increasingly real prospect. The authors have undertaken a comprehensive feasibility study for 2S-4S gasoline engines. This study has encompassed concept and detailed design, design analysis, one-dimensional gas dynamics simulation, three-dimensional computational fluid dynamics, and vehicle simulation. The resulting 2/4SIGHT concept engine is a 1.04 l in-line three-cylinder engine producing 230 Nm and 85 kW.
Technical Paper

Diesel Engine Combustion Optimization for Bio-Diesel Blends Using Taguchi and ANOVA Statistical Methods

2013-09-08
2013-24-0011
Diesel engine emissions are directly influenced by the air fuel mixture within the cylinder chamber. Increasing concern over the environment impacts of the exhaust pollutants has enforced the setting of emissions legislation since the 1960s. In the last decades emissions legislations have become stricter which resulted to the introduction of multiple injection strategies and exhaust gas recirculation (EGR) in the cylinder in order to abate emissions produced. In this study, the effect of injection rate for double in-cylinder injection in combination with various EGR and bio-diesel fuel rates has been studied using CFD simulations. Taguchi orthogonal arrays have been used for reducing the number of simulations for possible combinations of different rates of injection quantities, EGR composition and bio-diesel quantities. Oneway analysis of variance technique (ANOVA) has been used to estimate the importance of the above factors to the emissions output and performance of the engine.
Technical Paper

Diesel Soot Oxidation under Controlled Conditions

2001-09-24
2001-01-3673
A quantitative relationship between diesel soot oxidation rate and oxidation temperature and oxygen partial pressure was investigated by burning the diesel exhaust soot particles in a controlled flat flame supplied with methane/air/oxygen/nitrogen mixtures. The oxidation temperature and the oxygen partial pressure were controlled in the ranges of 1530 to 1820 K and 0.01 to 0.05 atm (1atm = 1.01325 bar) respectively. Soot particle size distribution measurements were achieved with transmission electron microscopy (TEM) for particle samples that were collected on copper grids at different positions along the flame centerline. Oxidation periods were determined by means of laser Doppler anemometry (LDA). The experimental results showed that the experimental oxidation rates fall between the values predicted by the Nagle and Strickland-Constable formula and those by the Lee formula.
Technical Paper

Dilution Boundary Expansion Mechanism of SI-CAI Hybrid Combustion Based on Micro Flame Ignition Strategy

2019-04-02
2019-01-0954
In decade years, Spark Ignition-Controlled Auto Ignition (SI-CAI) hybrid combustion, also called Spark Assisted Compression Ignition (SACI) has shown its high-efficiency and low emissions advantages. However, high dilution causes the problem of unstable initial ignition and flame propagation, which leads to high cyclic variation of heat release and IMEP. The instability of SI-CAI hybrid combustion limits its dilution degree and its ability to improve the thermal efficiency. In order to solve instability problems and expand the dilution boundary of hybrid combustion, micro flame ignition (MFI) strategy is applied in gasoline hybrid combustion engines. Small amount of Dimethyl Ether (DME) chosen as the ignition fuel is injected into cylinder to form micro flame kernel, which can stabilize the ignition combustion process.
Technical Paper

Dilution Effects on the Controlled Auto-Ignition (CAI) Combustion of Hydrocarbon and Alcohol Fuels

2001-09-24
2001-01-3606
This paper presents results from an experimental programme researching the in-cylinder conditions necessary to obtain homogenous CAI (or HCCI) combustion in a 4-stroke engine. The fuels under investigation include three blends of Unleaded Gasoline, a 95 RON Primary Reference Fuel, Methanol, and Ethanol. This work concentrates on establishing the CAI operating range with regard to Air/Fuel ratio and Exhaust Gas Re-circulation and their effect on the ignition timing, combustion rate and variability, Indicated thermal efficiency, and engine-out emissions such as NOx. Detailed maps are presented, defining how each of the measured variables changes over the entire CAI region. Results indicate that the alcohols have significantly higher tolerance to dilution than the hydrocarbon fuels tested. Also, variations in Gasoline blend have little effect on any of the combustion parameters measured.
Technical Paper

Direct In-cylinder CO2 Measurements of Residual Gas in a GDI Engine for Model Validation and HCCI Combustion Development

2013-04-08
2013-01-1654
An accurate prediction of residual burned gas within the combustion chamber is important to quantify for development of modern engines, especially so for those with internally recycled burned gases and HCCI operations. A wall-guided GDI engine has been fitted with an in-cylinder sampling probe attached to a fast response NDIR analyser to measure in-situ the cycle-by-cycle trapped residual gas. The results have been compared with a model which predicts the trapped residual gas fraction based on heat release rate calculated from the cylinder pressure data and other factors. The inlet and exhaust valve timings were varied to produce a range of Residual Gas Fraction (RGF) conditions and the results were compared between the actual measured CO2 values and those predicted by the model, which shows that the RGF value derived from the exhaust gas temperature and pressure measurement at EVC is consistently overestimated by 5% over those based on the CO2 concentrations.
Technical Paper

Effect of Flame Propagation on the Auto-Ignition Timing in SI-CAI Hybrid Combustion (SCHC)

2014-10-13
2014-01-2672
SCHC (SI-CAI hybrid combustion), also known as spark-assisted HCCI, has been proved to be an effective method to stabilize combustion and extend the operation range of high efficiency, low temperature combustion. The combustion is initiated by the spark discharge followed by a propagation of flame front until the auto-ignition of end-gas. Spark ignition and the spark timing can be used to control the combustion event. The goal of this research is to study the effect of flame propagation on the auto-ignition timing in SCHC by means of chemiluminescence imaging and heat release analysis based on an optical engine. With higher EGR (exhaust gas recirculation) rate, more fuel is consumed by the flame propagation and stronger correlation between the flame propagation and auto-ignition is observed.
Technical Paper

Effect of Injection Timing on Mixture and CAI Combustion in a GDI Engine with an Air-Assisted Injector

2006-04-03
2006-01-0206
The application of controlled auto-ignition (CAI) combustion in gasoline direct injection (GDI) engines is becoming of more interest due to its great potential of reducing both NOx emissions and fuel consumption. Injection timing has been known as an important parameter to control CAI combustion process. In this paper, the effect of injection timing on mixture and CAI combustion is investigated in a single-cylinder GDI engine with an air-assisted injector. The liquid and vapour phases of fuel spray were measured using planar laser induced exciplex fluorescence (PLIEF) technique. The result shows that early injection led to homogeneous mixture but late injection resulted in serious stratification at the end of compression. CAI combustion in this study was realized by using short-duration camshafts and early closure of the exhaust valves. During tests, the engine speed was varied from 1200rpm to 2400rpm and A/F ratio from stoichiometric to lean limit.
Technical Paper

Effect of a Split-Injection Strategy on the Atomisation Rate Using a High Pressure Gasoline DI Injector

2020-04-14
2020-01-0322
The Gasoline direct-injection (GDI) engine can emit high levels of particulate matter and unburned Hydrocarbons when operating under stratified charge combustion mode. Injecting late in the compression stroke means the fuel has insufficient time to atomise and evaporate. This could cause fuel film accumulation on the piston surface and combustion liner. Locally fuel rich diffusion combustion could also result in the formation of soot particles. Employing a split-injection strategy can help tackle these issues. The first injection is initiated early in the intake stroke and could ensure a global homogeneous charge. The second injection during the compression stroke could help form a fuel-rich charge in the vicinity of the spark plug. Many studies have established the crucial role that a split-injection strategy plays in the stratified charge operation of GDI engines.
Technical Paper

Effect of a split-injections strategy on the atomisation rate for charge stratification using a high pressure gasoline multi-hole injector

2019-12-19
2019-01-2248
Some of the challenges of optimising the gasoline direct-injection engines are achieving high rates of atomisation and evaporation of fuel sprays for effective fuel-air mixture formation. This is especially important for the stratified charge when operating under cold-start and part-load conditions. Poorly mixed charge results in the increased production of total Hydrocarbons and Nitrogen Oxides. Many studies have previously focused on improving the spray characteristics of a single fuel injection strategy from direct-injection gasoline injectors, with fuel rail pressures of up to 20MPa. The current study focuses on a split injections strategy and its influence on the spray's structure, fuel-air mixing and atomisation rates. Short pulse widths in the range of 0.3ms to 0.8ms are employed. In particular, the effects of dwell times between the two injections on the second injection's spray characteristics are evaluated.
X